4 research outputs found

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Karyotypic diversification and its contribution to the taxonomy of Eleocharis (Cyperaceae) from Brazil

    No full text
    A karyotype analysis of 147 populations of 25 Brazilian species of Eleocharis (Cyperaceae) was carried out, including representatives of the three subgenera that occur in the country: Limnochloa, Scirpidium and Eleocharis. The analyses showed chromosomes without centromeres, but with terminal nucleolar constrictions (satellites) in some chromosomes. The chromosome numbers varied from 2n = 6 in E. subarticulata and E. maculosa to 2n = 60 in E. laeviglumis, but the chromosome basic number x = 5 was confirmed. Species of the subgenera Eleocharis and Scirpidium possess fewer and larger chromosomes, while those in the subgenus Limnochloa have small and more numerous chromosomes. These features indicate that the karyotypes of the subgenera Eleocharis and Scirpidium are more closely related, in agreement with morphological and phylogenetical data. The representatives of the section Eleocharis exhibited the largest differences in chromosome number and size, probably due to chromosome fission and fusion. Polyploidy was the most common event in this group. Nevertheless, most of the studied species exhibited regular meiosis with only bivalent formation, even the polyploids, such as in E. geniculata and E. sellowiana. The cytogenetic information obtained showed quite variable karyotypes with chromosomes gradually decreasing in size, and predominance of polyploidy. These results are useful in the differentiation of the subgenera.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    No full text
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025 degrees x 0.025 degrees) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from similar to 1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    corecore